Acoustic basis for fish prey discrimination by echolocating dolphins and porpoises.

نویسندگان

  • Whitlow W L Au
  • Brian K Branstetter
  • Kelly J Benoit-Bird
  • Ronald A Kastelein
چکیده

The biosonar system of dolphins and porpoises has been studied for about 5 decades and much has been learned [Au, W. W. L. (1993). The Sonar of Dolphins (Springer, New York)]. Most experiments have involved human-made targets; little is known about odontocetes' echolocation of prey. To address this issue, acoustic backscatter from Atlantic cod (Gadus morhua), gray mullet (Chelon labrosus), pollack, (Pollachius pollachius), and sea bass (Dicentrarchus labrax) was measured using simulated biosonar signals of the Atlantic bottlenose dolphin and harbor porpoise. The fish specimens were rotated so that the effects of the fish orientation on the echoes could be determined. Echoes had the highest amplitude and simplest structure when the incident angle was perpendicular to the longitudinal axis of the fish. The complexity of the echoes increased as the aspect angle of the fish moved away from the normal aspect. The echoes in both the time and frequency domains were easily distinguishable among the four species of fish and were generally consistent within species. A cochlear model consisting of a bank of band-passed filters was also used to analyze the echoes. The overall results suggest that there are sufficient acoustic cues available to discriminate between the four species of fish based on the echoes received, independent of aspect angle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic behaviour of echolocating porpoises during prey capture.

Porpoise echolocation has been studied previously, mainly in target detection experiments using stationed animals and steel sphere targets, but little is known about the acoustic behaviour of free-swimming porpoises echolocating for prey. Here, we used small onboard sound and orientation recording tags to study the echolocation behaviour of free-swimming trained porpoises as they caught dead, f...

متن کامل

Modeling the detection range of fish by echolocating bottlenose dolphins and harbor porpoises.

The target strength as a function of aspect angle were measured for four species of fish using dolphin-like and porpoise-like echolocation signals. The polar diagram of target strength values measured from an energy flux density perspective showed considerably less fluctuation with azimuth than would a pure tone pulse. Using detection range data obtained from dolphin and porpoise echolocation e...

متن کامل

How Can Dolphins Recognize Fish According to Their Echoes? A Statistical Analysis of Fish Echoes

Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatur...

متن کامل

Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic spotted dolphins (Stenella frontalis) in the wild.

Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spati...

متن کامل

Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)

Toothed whales use sonar to detect, locate, and track prey. They adjust emitted sound intensity, auditory sensitivity and click rate to target range, and terminate prey pursuits with high-repetition-rate, low-intensity buzzes. However, their narrow acoustic field of view (FOV) is considered stable throughout target approach, which could facilitate prey escape at close-range. Here, we show that,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 126 1  شماره 

صفحات  -

تاریخ انتشار 2009